यदि $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0$ के प्रसार में पदों की संख्या $28$ है, तो इस प्रसार में आने वाले सभी पदों के गुणांकों का योग है:

  • [JEE MAIN 2016]
  • A

    $243$

  • B

    $729$

  • C

    $64$

  • D

    $2187$

Similar Questions

यदि  ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}}$ हो, तब ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}}$ का मान है

  • [IIT 1966]

यदि ${(1 - 3x + 10{x^2})^n}$ के विस्तार में गुणांकों का योग $a$ तथा ${(1 + {x^2})^n}$ के विस्तार में गुणांकों का योग $b$ हो, तो

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, तब  ${C_0} + {C_2} + {C_4} + {C_6} + .....$ का मान होगा

$\left(x+\sqrt{x^{3}-1}\right)^{5}+\left(x-\sqrt{x^{3}-1}\right)^{5},(x>1)$ के प्रसार में सभी विषम घातों वाले पदों के गुणांकों का योग है

  • [JEE MAIN 2018]

मान $[ x ]$ महत्तम पूर्णांक $\leq x$ है। यदि $n \in N$ के लिए $,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$ है, तो  $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$  बराबर है 

  • [JEE MAIN 2021]